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Prompt 
 
A group of high school Mathematics Club members was examining the concept of 
modular arithmetic. They were working in mod 5, and as they were becoming 
familiar with mod 5, a student asked whether it is possible to write fractions in 
mod 5. For example, what is the meaning of 3

4 mod5 ? 

 
Commentary 
 
The symbol “ a

b ” such that a and b are integers and b≠0 can be interpreted in a 
variety of ways: as a single rational number (commonly called “fraction,”) as a 
ratio of two numbers, or as a quotient of two numbers. However, these 
interpretations may cause confusion when dealing with operations within integer 
fields Zn (where n is a positive integer). Thus it is important to move beyond the 
previously mentioned common interpretations of the symbol “ a

b ” and only regard 
it as a symbol. 
 
When doing modular arithmetic, it does not make sense to refer to ab as a fraction, 
where b is not a factor of a, because the congruence relation mod m (for m a 
positive integer) is defined only for integers. This is discussed in Mathematical 
Focus 1. However, one can refer to abmodm as an expression that has meaningful 

interpretations. If abmodm is to have meaning, then it must be an element of a 
finite field, Zm, as described in Mathematical Focus 2. In Mathematical Focus 3, 
a
b is interpreted to represent a times the multiplicative inverse of b. In 

Mathematical Focus 4, p
q is interpreted as the solution, x, to the congruence 

statement qx ≡ pmodm , where p, q, and m are integers, m is prime, and q is not 
congruent to 0 mod m. Mathematical Focus 5 addresses the idea of congruence 
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classes for numbers mod m and the conditions necessary for the expressions 
a
bmodm and c

d modm  to be in the same congruence class. 

 
Given an expression of the form a

bmodm , one can ask how to find a value that it 
can represent in mod m. Mathematical Focus 6 presents a type of Greedy 
Algorithm that can be used, in general, to find such a value. 
 

Mathematical Foci 
 
 
Mathematical Focus 1 
 
The congruence relation mod m (for m a positive integer) is defined only for 
integers. 
 
By definition, if a, b, and m are integers with m > 0, then “a is said to be 

congruent to b modulo m, if m | (a − b) ” (Strayer, 1994, p. 38). In other words, 
integer a is congruent to integer b modulo m, if positive integer m is a factor of 
 a − b .   
 
The statement “a is congruent to b modulo m” is written  a ≡ bmod m , where b is 
called the residue or the remainder and m is called the modulus.  Commonly 
used residues for mod m are non-negative integers less than m. For example, 
30 ≡ 2mod4  because 4 is a factor of (30–2).  (Note:  If (a − b)  is not integrally 
divisible by m, then it is said that “a is not congruent to b modulo m.”) 
 

Thus, by definition, if 
3
4  is interpreted to represent a number (e.g., a point on the 

number line halfway between 12 and 1), then  
3
4 mod5

 does not make sense because 
3
4  is not an integer. 

 
 
Mathematical Focus 2 
 
Modular arithmetic occurs in a mathematical system of elements, operations on 
those elements, and properties that hold for those operations with those 
elements. Zm, the integers modulo m (for prime m), form a mathematical system 
that is a finite field. 
 
A field is a set, F, of elements together with two operations, addition (denoted as 
+) and multiplication (denoted as *), that satisfies the field axioms: 
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Axiom Addition Multiplication 

Closure Set F is closed under 
addition: 

a and b in F implies a + b 
is in F. 

Set F is closed under 
multiplication: 

a and b in F implies a * b 
is in F. 

Associativity For all a, b, and c in F,  

(a + b) + c = a + (b + c) . 

For all a, b, and c in F,  

(a ⋅b) ⋅ c = a ⋅ (b ⋅ c) . 

Commutativity For all a, b in F,  

a + b = b + a . 

For all a, b in F,  

a ⋅b = b ⋅a . 

Existence of identities There is an element 0 in F 
such that for all a in F,  

a + 0 = a. 

There is an element 1 in F 
such that for all a in F,  

a * 1 = a. 

Existence of inverses For all a in F, there is an 
element –a in F such that  

a + (–a) = 0. 

For all a≠0 in F, there is 

an element a-1 (or
1
a ) in F 

such that  

a * (a-1) = 1  or 

a * (
1
a ) = 1. 

Distributivity For all a, b, and c in F, 

a * (b + c) = a * b + a * c. 

 
Zm, the integers modulo m (for m prime), consists of a set of integers {0, 1, 2, …, 
(m–1)} together with the operations of integer addition and integer 
multiplication. Zm (m prime) forms a mathematical system that is a finite field, 
because Zm has a finite number of elements and satisfies all the field axioms (see 
Niven & Zuckerman, 1966, p. 65, for a proof that Zm is a field iff m is prime.) 
 
Each element of Zm can be interpreted as a representative of an equivalence class 
created by the congruence relation a ≡ b modulo m. For example, in Z5 there are 5 
elements, typically denoted by the standard class representatives 0, 1, 2, 3, and 4. 
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0[ ] = …, -10, -5, 0, 5, 10, …{ } = 5n, n ∈Ζ{ }
1[ ] = …, -9, -4, 1, 6, 11, …{ } = 5n +1, n ∈Ζ{ }  
2[ ] = …, -8, -3, 2, 7, 12, …{ } = 5n + 2, n ∈Ζ{ }  
3[ ] = …, -7, -2, 3, 8, 13, …{ } = 5n + 3, n ∈Ζ{ }  
4[ ] = …, -6, -1, 4, 9, 14, …{ } = 5n + 4, n ∈Ζ{ }  

 
Because Z5 is a finite field and thus closed, if ¾ mod 5 has meaning, then it must 
be some element of one of the equivalence classes for which one of the elements 
of Z5 is a representative. 
 
 
Mathematical Focus 3 
 
A meaning can exist for pq  mod m by considering pq mod m to represent the 
product of p and the multiplicative inverse of q in mod m, where p and q are 
integers, m is prime, and q is not congruent to 0 mod m. 
 
A multiplicative inverse (if it exists) is an element, a−1, such that 
a−1· a = a · a−1 = 1. When working in the rational numbers, the number 1a  is the 

multiplicative inverse of a (a ≠ 0), because 1a · a = a · 1a  = 1. When working in a 
modular system with a prime modulus, each non-zero element in the set will have 
a multiplicative inverse (see Niven & Zuckerman, 1966, p. 65, for a proof that Zm 
is a field iff m is prime). 
 
To answer the question, “What is the meaning of 3

4 mod5 ?” one can interpret  
3
4 mod5 to represent the product of 3 and 1

4 , such that the symbol “ 1
4 ” is 

interpreted as the multiplicative inverse of 4 in mod 5. Note that the product of a 
non-zero number and its multiplicative inverse is one. 
 
For example, to find the multiplicative inverse of 4, consider each of the non-zero 
congruence classes mod 5,  
 

1[ ] = …, -9, -4, 1, 6, 11, …{ } = 5n +1, n ∈Ζ{ }
2[ ] = …, -8, -3, 2, 7, 12, …{ } = 5n + 2, n ∈Ζ{ }
3[ ] = …, -7, -2, 3, 8, 13, …{ } = 5n + 3, n ∈Ζ{ }
4[ ] = …, -6, -1, 4, 9, 14, …{ } = 5n + 4, n ∈Ζ{ } , 

 
multiply the general expression for a representative of the class by 4 and 
determine whether or not the resulting product is congruent to 1 mod 5.  This is 
equivalent to asking the question, “Is 5 a factor of the number that is one less 
than the resulting product?” 
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For [1] (4)(5n + 1) = 20n +4.  Given that 5 is not a factor of (20n + 4) – 1,  
(4)(5n + 1) is not congruent to 1. 

 
For [2], (4)(5n + 2) = 20n + 8.   Given that 5 is not a factor of (20n + 8) – 1, 
(4)(5n + 1) is not congruent to 1. 

 
For [3], (4)(5n + 3) = 20n + 12. Given that 5 is not a factor of (20n + 12) – 1, 
(4)(5n + 1) is not congruent to 1. 

 
For [4], (4)(5n + 4) = 20n + 16. Given that 5 IS a factor of  (20n + 16) – 1, 
 (4)(5n + 1) IS congruent to 1.  Therefore, the multiplicative inverse of 4 is 4. 

Given that 3(4)=12 and 12 ≡ 2mod5 , if one interprets the expression  
3
4 mod5

 to 
represent (the product of 3 and the multiplicative inverse of 4) mod 5, then the 
expression 34 mod5  represents 2 mod 5. 

 
Mathematical Focus 4 
 
A meaning can exist for p

q modm  by considering p
q modm  to represent x such 

that  px ≡ q mod  m , where p, q, and m are integers, m is prime, and q is not 
congruent to 0 mod m. 
 
Based on what it means to be congruent modulo m, the congruence classes mod 5 
are:   

0[ ] = …, -10, -5, 0, 5, 10, …{ } = 5n, n ∈Ζ{ }
1[ ] = …, -9, -4, 1, 6, 11, …{ } = 5n +1, n ∈Ζ{ }
2[ ] = …, -8, -3, 2, 7, 12, …{ } = 5n + 2, n ∈Ζ{ }
3[ ] = …, -7, -2, 3, 8, 13, …{ } = 5n + 3, n ∈Ζ{ }
4[ ] = …, -6, -1, 4, 9, 14, …{ } = 5n + 4, n ∈Ζ{ } . 

    
To answer the question, “What is the meaning of 3

4 mod5 ?” one can interpret 34 to 

represent “x such that   4x ≡ 3mod5 .” Examining the set of values congruent to 3 
mod 5 for multiples of 4, without loss of generality, choose the smallest positive 
multiple of 4, namely 8, and solve the resulting congruence statement for x. 

  

4x ≡ 8mod5
x ≡ 2mod5  

 
Therefore, if 34 mod5  is interpreted to represent x such that  4x ≡ 3mod5 , then x, 

and thus 3
4 mod5 , represents  2mod5 . 
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Mathematical Focus 5 
 
A necessary and sufficient condition for p

q modm  and rsmodm  to be in the same 
congruence class is ps ≡ qr( )modm . 
 
For integers p, q, r, s, and m ( p, s ≡ 0modm  and m prime), p

q modm  and rsmodm  

are in the same congruence class if and only if ps ≡ qr( )modm , or 
p
q ≡

r
smodm↔ ps ≡ qr( )modm . The proof that follows uses the interpretation that 

x
ymodm  represents (x ⋅multiplicative inverse of y)modm  for integers x, y, m 

( y ≡ 0modm  and m > 0), and the symbol, y−1 , will be used to represent the 
multiplicative inverse of y. 
 
Proof 
For integers p, q, r, s, and m, where p and s are not congruent to 0modm  and 
where m is prime: 
 

If p
q ≡

r
smodm , then ps ≡ qr( )modm . 

 
p
q ≡

r
smodm  

Using the interpretation that xymodm  represents 

(x ⋅multiplicative inverse of y)modm  for integers x, y, m ( y ≡ 0modm  and 
m > 0), 

p q−1( ) ≡ r s−1( ){ }modm . 

Multiplying each side of the congruence by s, 

p q−1( )s ≡ r s−1( )s{ }modm . 

Because the product of a number and its multiplicative inverse is 1, 
p q−1( )s ≡ rmodm . 

Commuting s and the multiplicative inverse of q, 
ps q−1( ) ≡ rmodm . 

Multiplying each side of the congruence by q, 
ps q−1( )q ≡ rq( )modm . 

So,   
ps ≡ qr( )modm . 

 

Therefore, if p
q ≡

r
smodm , then ps ≡ qr( )modm . 
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If ps ≡ qr( )modm , then p
q ≡

r
smodm . 

 
ps ≡ qr( )modm  

Multiplying each side of the congruence by the multiplicative inverse of s, 
s−1 , 

p ≡ qrs−1( )modm . 

Thus,  
p ≡ q r

s( ){ }modm . 

Multiplying each side of the congruence by the multiplicative inverse of q, 
q −1 , and using the commutative property, 

pq−1 ≡ qq−1 r
s( ){ }modm . 

Because the product of a number and its multiplicative inverse is 1, 
pq−1 ≡ r

smodm , or p
q ≡

r
smodm . 

 
Therefore, if ps ≡ qr( )modm , then p

q ≡
r
smodm . 

 

So, p
q modmand  rsmodm  are in the same congruence class if and only 

if ps ≡ qr( )modm . 
 
 
Applying this theorem to 34 mod5 leads to several conclusions: 

(i) 34 mod5  is in the same congruence class as p
q mod5  if and only if 3q ≡ 4 pmod5 . 

 
(ii) 34 mod5 and 68 mod5 , are in the same congruence class. 

The products of (3)(8) and (6)(4) are both congruent to 4mod5 .  This 
result is not surprising, given that 34  and 68  are equivalent fractions in the 
real number system. 
 

(iii) 34 mod5  and 3k4 kmod5  (k ≠0), are in the same congruence class. 

 The products (3)(4k) and (4)(3k) are both congruent to 12k( )mod5 . 
 
(iv) 34 mod5  and 613 mod5  are in the same congruence class. 

The products of (3)(13) and (6)(4) are both congruent to 4mod5 .  This 
may be counterintuitive because 34  and 6

13 are not equivalent fractions in 
the real number system. 

 
(v) 34 mod5 and 3+5k4+5kmod5  (k an integer) are in the same congruence class. 

The products (3)(4 + 5k) and (4)(3 + 5k) are congruent to 12mod5  and 
therefore, 2mod5 . 
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(vi) 34 mod5  and 3+5 j4+5kmod5  (j and k integers) are in the same congruence class. 

The products (3)(4 + 5k) and (4)(3 + 5j) are both congruent to 12mod5 , 
which is congruent to 2mod5 . 

 
 
Mathematical Focus 6 
 
The value of p

q modm  (q and m are relatively prime, m prime) can be found 
using a type of Greedy Algorithm. 
 
To find a value for p

q  mod m, where q and m are relatively prime and m is prime, 

one can use an algorithm similar to a Greedy Algorithm (Weisstein, 2009)—an 
algorithm used to recursively construct a set of objects from the smallest possible 
constituent parts. 
 

Let q0 ≡ qmodm  and find p0 = m
q0
⎡⎢ ⎤⎥ , where f (x) = x⎡⎢ ⎤⎥  is the ceiling function that 

gives the least integer greater than or equal to x. 
 

Next, compute q1 ≡ (q0 ⋅ p0 )modm . From i = 1 , iterate pi = m
qi
⎡⎢ ⎤⎥  and 

qi+1 ≡ (qi ⋅ pi )modm , until qn = 1. Then p
q ≡ p ⋅ pi

i=0

n−1

∏
⎛
⎝⎜

⎞
⎠⎟
modm . (This method always 

works for m prime.) 
 
Applying this method to find 3

4 mod5 , p = 3, q = 4, and m = 5. 

So, q0 ≡ 4mod5 , and p0 = m
q0
⎡⎢ ⎤⎥ =

5
4⎡⎢ ⎤⎥ = 2 . 

Then, q1 ≡ q0 ⋅ p0 ≡ 4 ⋅2 ≡ 3mod5 , and p1 = m
q1
⎡⎢ ⎤⎥ =

5
3⎡⎢ ⎤⎥ = 2 . 

Finally, q2 ≡ q1 ⋅ p1 ≡ 3 ⋅2 ≡ 1mod5 , making n = 2. 
 

So, 
3
4
≡ p ⋅ pi

i=0

2−1

∏ ≡ p ⋅ p0 ⋅ p1 ≡ 3 ⋅2 ⋅2 ≡ 2mod5 . 

 

Therefore, 
3
4
≡ 2mod5 . 
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Post-Commentary 
 
A meaning for 34 mod5  exists because 5 is prime and therefore every nonzero 
element in Z5 has a multiplicative inverse. However, for Zm with m composite, the 
multiplicative inverse of a nonzero element may not exist. 
 
Suppose one wished to find the value represented by 3

4 mod6 . Consider the 
multiplication table for mod 6: 

• 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1  

The products 1 times 1 and 5 times 5 both equal 1. Therefore, 1 is its own 
multiplicative inverse, and 5 is its own multiplicative inverse. Also, no other 
product of two values equals 1. Therefore, multiplicative inverses for 0, 2, 3, and 
4 do not exist. 
 
Because (multiplicative inverse of 4) mod 6 does not exist, 34 mod6 , as defined to 
be the product {3 and (multiplicative inverse of 4)} mod 6 does not exist. 
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