MAC-CPTM Situations Project

Situation 54(PN6): Modular Arithmetic

Prepared at the
University of Georgia Center for Proficiency in Teaching Mathematics
29 July 2006 - Pawel Nazarewicz
Edited at Pennsylvania State University Mid-Atlantic Center for Mathematic Teaching and Learning 29 September 2009 -- Glen Blume, Heather Godine, Svetlana Konnova, and Jeanne Shimizu

Prompt

A group of high school Mathematics Club members was examining the concept of modular arithmetic. They were working in $\bmod 5$, and as they were becoming familiar with $\bmod 5$, a student asked whether it is possible to write fractions in $\bmod 5$. For example, what is the meaning of $\frac{3}{4} \bmod 5$?

Commentary

The symbol " $\frac{a}{b}$ " such that a and b are integers and $\mathrm{b} \neq \mathrm{o}$ can be interpreted in a variety of ways: as a single rational number (commonly called "fraction,") as a ratio of two numbers, or as a quotient of two numbers. However, these interpretations may cause confusion when dealing with operations within integer fields Z_{n} (where n is a positive integer). Thus it is important to move beyond the previously mentioned common interpretations of the symbol " $\frac{a}{b}$ " and only regard it as a symbol.

When doing modular arithmetic, it does not make sense to refer to $\frac{a}{b}$ as a fraction, where b is not a factor of a, because the congruence relation $\bmod m$ (for m a positive integer) is defined only for integers. This is discussed in Mathematical Focus 1 . However, one can refer to $\frac{a}{b} \bmod m$ as an expression that has meaningful interpretations. If $\frac{a}{b} \bmod m$ is to have meaning, then it must be an element of a finite field, Z_{m}, as described in Mathematical Focus 2. In Mathematical Focus 3, $\frac{a}{b}$ is interpreted to represent a times the multiplicative inverse of b. In
Mathematical Focus $4, \frac{p}{q}$ is interpreted as the solution, x, to the congruence statement $q x \equiv p \bmod m$, where p, q, and m are integers, m is prime, and q is not congruent to $0 \bmod m$. Mathematical Focus 5 addresses the idea of congruence
classes for numbers mod m and the conditions necessary for the expressions $\frac{a}{b} \bmod m$ and $\frac{c}{d} \bmod m$ to be in the same congruence class.

Given an expression of the form $\frac{a}{b} \bmod m$, one can ask how to find a value that it can represent in $\bmod m$. Mathematical Focus 6 presents a type of Greedy Algorithm that can be used, in general, to find such a value.

Mathematical Foci

Mathematical Focus 1

The congruence relation mod m (for m a positive integer) is defined only for integers.

By definition, if a, b, and m are integers with $m>0$, then " a is said to be congruent to b modulo m, if $m \mid(a-b)$ " (Strayer, 1994, p. 38). In other words, integer a is congruent to integer b modulo m, if positive integer m is a factor of $a-b$.

The statement " a is congruent to b modulo m " is written $a \equiv b \bmod m$, where b is called the residue or the remainder and m is called the modulus. Commonly used residues for $\bmod m$ are non-negative integers less than m. For example, $30 \equiv 2 \bmod 4$ because 4 is a factor of (30-2). (Note: If $(a-b)$ is not integrally divisible by m, then it is said that " a is not congruent to b modulo m.")

Thus, by definition, if ${ }^{\frac{3}{4}}$ is interpreted to represent a number (e.g., a point on the number line halfway between $\frac{1}{2}$ and 1), then ${ }^{\frac{3}{4}} \bmod 5$ does not make sense because $\frac{3}{4}$ is not an integer.

Mathematical Focus 2

Modular arithmetic occurs in a mathematical system of elements, operations on those elements, and properties that hold for those operations with those elements. Z_{m}, the integers modulo m (for prime m), form a mathematical system that is a finite field.

A field is a set, F , of elements together with two operations, addition (denoted as +) and multiplication (denoted as *), that satisfies the field axioms:

Axiom	Addition	Multiplication
Closure	Set F is closed under addition: a and b in F implies $a+b$ is in F .	Set F is closed under multiplication: a and b in F implies $a^{*} b$ is in F .
Associativity	For all a, b, and c in F , $(a+b)+c=a+(b+c)$	For all a, b, and c in F , $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Commutativity	For all a, b in F , $a+b=b+a .$	For all a, b in F, $a \cdot b=b \cdot a$.
Existence of identities	There is an element O in F such that for all a in F, $a+o=a .$	There is an element 1 in F such that for all a in F , $\mathrm{a}^{*} 1=\mathrm{a} .$
Existence of inverses	For all a in F, there is an element -a in F such that $a+(-a)=0$	For all $a \neq \mathrm{O}$ in F, there is an element a^{-1} (or $\frac{1}{a}$) in F such that $\begin{aligned} & a^{*}\left(a^{-1}\right)=1 \text { or } \\ & a^{*}\left(\frac{1}{a}\right)=1 . \end{aligned}$
Distributivity	For all a, b, and c in F , $a^{*}(b+c)=a^{*} b+a^{*} c$	

Z_{m}, the integers modulo m (for m prime), consists of a set of integers $\{0,1,2, \ldots$, ($m-1$)\} together with the operations of integer addition and integer multiplication. Z_{m} (m prime) forms a mathematical system that is a finite field, because Z_{m} has a finite number of elements and satisfies all the field axioms (see Niven \& Zuckerman, 1966, p. 65, for a proof that Z_{m} is a field iff m is prime.)

Each element of Z_{m} can be interpreted as a representative of an equivalence class created by the congruence relation $a \equiv b$ modulo m. For example, in Z_{5} there are 5 elements, typically denoted by the standard class representatives $0,1,2,3$, and 4 .

$$
\begin{aligned}
& {[0]=\{\ldots,-10,-5,0,5,10, \ldots\}=\{5 n, n \in \mathrm{Z}\}} \\
& {[1]=\{\ldots,-9,-4,1,6,11, \ldots\}=\{5 n+1, n \in \mathrm{Z}\}} \\
& {[2]=\{\ldots,-8,-3,2,7,12, \ldots\}=\{5 n+2, n \in \mathrm{Z}\}} \\
& {[3]=\{\ldots,-7,-2,3,8,13, \ldots\}=\{5 n+3, n \in \mathrm{Z}\}} \\
& {[4]=\{\ldots,-6,-1,4,9,14, \ldots\}=\{5 n+4, n \in \mathrm{Z}\}}
\end{aligned}
$$

Because Z_{5} is a finite field and thus closed, if $3 / 4 \bmod 5$ has meaning, then it must be some element of one of the equivalence classes for which one of the elements of Z_{5} is a representative.

Mathematical Focus 3

A meaning can exist for $\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{m}$ by considering $\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{m}$ to represent the product of p and the multiplicative inverse of q in $\bmod \mathrm{m}$, where p and q are integers, m is prime, and q is not congruent to $\mathrm{o} \bmod \mathrm{m}$.

A multiplicative inverse (if it exists) is an element, a^{-1}, such that $a^{-1} \cdot a=a \cdot a^{-1}=1$. When working in the rational numbers, the number $\frac{1}{a}$ is the multiplicative inverse of $a(a \neq 0)$, because $\frac{1}{a} \cdot a=a \cdot \frac{1}{a}=1$. When working in a modular system with a prime modulus, each non-zero element in the set will have a multiplicative inverse (see Niven \& Zuckerman, 1966, p. 65, for a proof that Z_{m} is a field iff m is prime).

To answer the question, "What is the meaning of $\frac{3}{4} \bmod 5$?" one can interpret $\frac{3}{4} \bmod 5$ to represent the product of 3 and $\frac{1}{4}$, such that the symbol " $\frac{1}{4}$ " is interpreted as the multiplicative inverse of $4 \mathrm{in} \bmod 5$. Note that the product of a non-zero number and its multiplicative inverse is one.

For example, to find the multiplicative inverse of 4, consider each of the non-zero congruence classes mod 5 ,

$$
\begin{aligned}
& {[1]=\{\ldots,-9,-4,1,6,11, \ldots\}=\{5 n+1, n \in \mathrm{Z}\}} \\
& {[2]=\{\ldots,-8,-3,2,7,12, \ldots\}=\{5 n+2, n \in \mathrm{Z}\}} \\
& {[3]=\{\ldots,-7,-2,3,8,13, \ldots\}=\{5 n+3, n \in \mathrm{Z}\}} \\
& {[4]=\{\ldots,-6,-1,4,9,14, \ldots\}=\{5 n+4, n \in \mathrm{Z}\},}
\end{aligned}
$$

multiply the general expression for a representative of the class by 4 and determine whether or not the resulting product is congruent to $1 \bmod 5$. This is equivalent to asking the question, "Is 5 a factor of the number that is one less than the resulting product?"

For $[1](4)(5 n+1)=20 n+4$. Given that 5 is not a factor of $(20 n+4)-1$, $(4)(5 n+1)$ is not congruent to 1 .

For $[2],(4)(5 n+2)=20 n+8$. Given that 5 is not a factor of $(20 n+8)-1$, $(4)(5 n+1)$ is not congruent to 1 .

For [3], $(4)(5 n+3)=20 n+12$. Given that 5 is not a factor of $(20 n+12)-1$, $(4)(5 n+1)$ is not congruent to 1 .

For [4], $(4)(5 n+4)=20 n+16$. Given that 5 IS a factor of $(20 n+16)-1$, $(4)(5 n+1)$ IS congruent to 1 . Therefore, the multiplicative inverse of 4 is 4 .
Given that $3(4)=12$ and $12 \equiv 2 \bmod 5$, if one interprets the expression ${ }^{\frac{3}{4}} \bmod 5$ to represent (the product of 3 and the multiplicative inverse of 4) $\bmod 5$, then the expression $\frac{3}{4} \bmod 5 \operatorname{represents} 2 \bmod 5$.

Mathematical Focus 4

A meaning can exist for $\frac{p}{q} \bmod m$ by considering $\frac{p}{q} \bmod m$ to represent x such that $\mathrm{px} \equiv \mathrm{q} \bmod \mathrm{m}$, where p, q, and m are integers, m is prime, and q is not congruent to $\mathrm{o} \bmod \mathrm{m}$.

Based on what it means to be congruent modulo m, the congruence classes $\bmod 5$ are:

$$
\begin{aligned}
& {[0]=\{\ldots,-10,-5,0,5,10, \ldots\}=\{5 n, n \in \mathrm{Z}\}} \\
& {[1]=\{\ldots,-9,-4,1,6,11, \ldots\}=\{5 n+1, n \in \mathrm{Z}\}} \\
& {[2]=\{\ldots,-8,-3,2,7,12, \ldots\}=\{5 n+2, n \in \mathrm{Z}\}} \\
& {[3]=\{\ldots,-7,-2,3,8,13, \ldots\}=\{5 n+3, n \in \mathrm{Z}\}} \\
& {[4]=\{\ldots,-6,-1,4,9,14, \ldots\}=\{5 n+4, n \in \mathrm{Z}\} .}
\end{aligned}
$$

To answer the question, "What is the meaning of $\frac{3}{4} \bmod 5$?" one can interpret $\frac{3}{4}$ to represent " x such that $4 x \equiv 3 \bmod 5$." Examining the set of values congruent to 3 $\bmod 5$ for multiples of 4 , without loss of generality, choose the smallest positive multiple of 4 , namely 8 , and solve the resulting congruence statement for x.

$$
\begin{aligned}
4 x & \equiv 8 \bmod 5 \\
x & \equiv 2 \bmod 5
\end{aligned}
$$

Therefore, if $\frac{3}{4} \bmod 5$ is interpreted to represent x such that $4 x \equiv 3 \bmod 5$, then x, and thus $\frac{3}{4} \bmod 5$, represents $2 \bmod 5$.

Mathematical Focus 5

A necessary and sufficient condition for $\frac{p}{q} \bmod m$ and $\frac{\underline{r}}{s} \bmod m$ to be in the same congruence class is $p s \equiv(q r) \bmod m$.

For integers p, q, r, s, and $m(p, s \neq 0 \bmod m$ and m prime $), \frac{p}{q} \bmod m$ and $\frac{r}{s} \bmod m$ are in the same congruence class if and only if $p s \equiv(q r) \bmod m$, or $\frac{p}{q} \equiv \frac{r}{s} \bmod m \leftrightarrow p s \equiv(q r) \bmod m$. The proof that follows uses the interpretation that $\frac{x}{y} \bmod m$ represents $(x \cdot$ multiplicative inverse of $y) \bmod m$ for integers x, y, m
($y \neq 0 \bmod m$ and $m>0$), and the symbol, y^{-1}, will be used to represent the multiplicative inverse of y.

Proof
For integers p, q, r, s, and m, where p and s are not congruent to $0 \bmod m$ and where m is prime:

If $\frac{p}{q} \equiv \frac{r}{s} \bmod m$, then $p s \equiv(q r) \bmod m$.

$$
\frac{p}{q}=\frac{r}{s} \bmod m
$$

Using the interpretation that $\frac{x}{y} \bmod m$ represents
$(x \cdot$ multiplicative inverse of $y) \bmod m$ for integers $x, y, m(y \neq 0 \bmod m$ and $m>0$),

$$
p\left(q^{-1}\right) \equiv\left\{r\left(s^{-1}\right)\right\} \bmod m .
$$

Multiplying each side of the congruence by s,

$$
p\left(q^{-1}\right) s \equiv\left\{r\left(s^{-1}\right) s\right\} \bmod m .
$$

Because the product of a number and its multiplicative inverse is 1 ,

$$
p\left(q^{-1}\right) s \equiv r \bmod m .
$$

Commuting s and the multiplicative inverse of q,

$$
p s\left(q^{-1}\right) \equiv r \bmod m .
$$

Multiplying each side of the congruence by q,

$$
p s\left(q^{-1}\right) q \equiv(r q) \bmod m .
$$

So,

$$
p s \equiv(q r) \bmod m .
$$

Therefore, if $\frac{p}{q} \equiv \frac{r}{s} \bmod m$, then $p s \equiv(q r) \bmod m$.

If $p s \equiv(q r) \bmod m$, then $\frac{p}{q} \equiv \frac{r}{s} \bmod m$.

$$
p s \equiv(q r) \bmod m
$$

Multiplying each side of the congruence by the multiplicative inverse of s, s^{-1},

$$
p \equiv\left(q r s^{-1}\right) \bmod m .
$$

Thus,

$$
p \equiv\left\{q\left(\frac{r}{s}\right)\right\} \bmod m .
$$

Multiplying each side of the congruence by the multiplicative inverse of q, q^{-1}, and using the commutative property,

$$
p q^{-1} \equiv\left\{q q^{-1}\left(\frac{r}{s}\right)\right\} \bmod m
$$

Because the product of a number and its multiplicative inverse is 1 ,

$$
p q^{-1} \equiv \frac{r}{s} \bmod m, \text { or } \frac{p}{q} \equiv \frac{r}{s} \bmod m .
$$

Therefore, if $p s \equiv(q r) \bmod m$, then $\frac{p}{q} \equiv \frac{r}{s} \bmod m$.

So, $\frac{p}{q} \bmod m$ and $\frac{r}{s} \bmod m$ are in the same congruence class if and only if $p s \equiv(q r) \bmod m$.

Applying this theorem to $\frac{3}{4} \bmod 5$ leads to several conclusions:
(i) $\frac{3}{4} \bmod 5$ is in the same congruence class as $\frac{p}{q} \bmod 5$ if and only if $3 q \equiv 4 p \bmod 5$.
(ii) $\frac{3}{4} \bmod 5$ and $\frac{6}{8} \bmod 5$, are in the same congruence class.

The products of (3)(8) and (6)(4) are both congruent to $4 \bmod 5$. This result is not surprising, given that $\frac{3}{4}$ and $\frac{6}{8}$ are equivalent fractions in the real number system.
(iii) $\frac{3}{4} \bmod 5$ and $\frac{3 k}{4 k} \bmod 5(k \neq 0)$, are in the same congruence class. The products $(3)(4 k)$ and $(4)(3 k)$ are both congruent to $(12 k) \bmod 5$.
(iv) $\frac{3}{4} \bmod 5$ and $\frac{6}{13} \bmod 5$ are in the same congruence class.

The products of (3)(13) and (6)(4) are both congruent to $4 \bmod 5$. This may be counterintuitive because $\frac{3}{4}$ and $\frac{6}{13}$ are not equivalent fractions in the real number system.
(v) $\frac{3}{4} \bmod 5$ and $\frac{3+5 k}{4+5 k} \bmod 5$ (k an integer) are in the same congruence class.

The products $(3)(4+5 k)$ and $(4)(3+5 k)$ are congruent to $12 \bmod 5$ and therefore, $2 \bmod 5$.
(vi) $\frac{3}{4} \bmod 5$ and $\frac{3+5 j}{4+5 k} \bmod 5(j$ and k integers) are in the same congruence class. The products $(3)(4+5 k)$ and $(4)(3+5 j)$ are both congruent to $12 \bmod 5$, which is congruent to $2 \bmod 5$.

Mathematical Focus 6

The value of $\frac{p}{q} \bmod m$ (q and m are relatively prime, m prime) can be found using a type of Greedy Algorithm.

To find a value for $\frac{p}{q} \bmod m$, where q and m are relatively prime and m is prime, one can use an algorithm similar to a Greedy Algorithm (Weisstein, 2009)-an algorithm used to recursively construct a set of objects from the smallest possible constituent parts.

Let $q_{0} \equiv q \bmod m$ and find $p_{0}=\left\lceil\frac{m}{q_{0}}\right\rceil$, where $f(x)=\lceil x\rceil$ is the ceiling function that gives the least integer greater than or equal to x.

Next, compute $q_{1} \equiv\left(q_{0} \cdot p_{0}\right) \bmod m$. From $i=1$, iterate $p_{i}=\left\lceil\frac{m}{q_{i}}\right\rceil$ and $q_{i+1} \equiv\left(q_{i} \cdot p_{i}\right) \bmod m$, until $q_{n}=1$. Then $\frac{p}{q} \equiv\left(p \cdot \prod_{i=0}^{n-1} p_{i}\right) \bmod m$. (This method always works for m prime.)

Applying this method to find $\frac{3}{4} \bmod 5, p=3, q=4$, and $m=5$.
So, $q_{0} \equiv 4 \bmod 5$, and $p_{0}=\left\lceil\frac{m}{q_{0}}\right\rceil=\left\lceil\frac{5}{4}\right\rceil=2$.
Then, $q_{1} \equiv q_{0} \cdot p_{0} \equiv 4 \cdot 2 \equiv 3 \bmod 5$, and $p_{1}=\left\lceil\frac{m}{q_{1}}\right\rceil=\left\lceil\frac{5}{3}\right\rceil=2$.
Finally, $q_{2} \equiv q_{1} \cdot p_{1} \equiv 3 \cdot 2 \equiv 1 \bmod 5$, making $n=2$.
So, $\frac{3}{4} \equiv p \cdot \prod_{i=0}^{2-1} p_{i} \equiv p \cdot p_{0} \cdot p_{1} \equiv 3 \cdot 2 \cdot 2 \equiv 2 \bmod 5$.
Therefore, $\frac{3}{4} \equiv 2 \bmod 5$.

Post-Commentary

A meaning for $\frac{3}{4} \bmod 5$ exists because 5 is prime and therefore every nonzero element in Z_{5} has a multiplicative inverse. However, for Z_{m} with m composite, the multiplicative inverse of a nonzero element may not exist.

Suppose one wished to find the value represented by $\frac{3}{4} \bmod 6$. Consider the multiplication table for $\bmod 6$:

\bullet	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

The products 1 times 1 and 5 times 5 both equal 1 . Therefore, 1 is its own multiplicative inverse, and 5 is its own multiplicative inverse. Also, no other product of two values equals 1 . Therefore, multiplicative inverses for $0,2,3$, and 4 do not exist.

Because (multiplicative inverse of 4) $\bmod 6$ does not exist, $\frac{3}{4} \bmod 6$, as defined to be the product $\{3$ and (multiplicative inverse of 4$)\} \bmod 6$ does not exist.

References

Niven, I., \& Zuckerman, H. S. (1966). An introduction to the theory of numbers. New York: Wiley.

Strayer, J. K. (1994). Elementary number theory. Long Grove, IL: Waveland Press.

Weisstein, E. W. (n.d.). Congruence. Retrieved September 14, 2009, from Wolfram MathWorld Web site: http://mathworld.wolfram.com/Congruence.html

